91勛圖

91勛圖 researchers develop portable 3D skin printer to repair deep wounds

3D skin printer
From left to right, Associate Professor Axel Guenther, Navid Hakimi and Richard Cheng have created the first skin printer that forms tissues in situ for application to wounds (photo by Liz Do)

91勛圖 researchers have developed a handheld 3D skin printer that deposits even layers of skin tissue to cover and heal deep wounds. The team believes it to be the first device that forms tissue in situ, depositing and setting in place, within two minutes or less.

The research, led by PhD student Navid Hakimi under the supervision of Associate Professor Axel Guenther of the Faculty of Applied Science & Engineering, and in collaboration with Dr. Marc Jeschke, director of the Ross Tilley Burn Centre at Sunnybrook Hospital and professor of immunology at the Faculty of Medicine, was recently published in the journal .

For patients with deep skin wounds, all three skin layers  the epidermis, dermis and hypodermis  may be heavily damaged. The current preferred treatment is called split-thickness skin grafting, where healthy donor skin is grafted onto the surface epidermis and part of the underlying dermis.

Split-thickness grafting on large wounds requires enough healthy donor skin to traverse all three layers, and sufficient graft skin is rarely available. This leaves a portion of the wounded area ungrafted or uncovered, leading to poor healing outcomes.

Although a large number of tissue-engineered skin substitutes exist, they are not yet widely used in clinical settings.

Most current 3D bioprinters are bulky, work at low speeds, are expensive and are incompatible with clinical application, explains Guenther.

This gif shows the 3D skin printer in action (courtesy of Navid Hakimi)

The research team believes their in-situ skin printer is a platform technology that can overcome these barriers, while improving the skin-healing process  a major step forward.

The handheld skin printer resembles a white-out tape dispenser  except the tape roll is replaced by a microdevice that forms tissue sheets. Vertical stripes of bio ink, made up of protein-based biomaterials including collagen, the most abundant protein in the dermis, and fibrin, a protein involved in wound healing, run along the inside of each tissue sheet.

Our skin printer promises to tailor tissues to specific patients and wound characteristics, says Hakimi. And its very portable.

The handheld device is the size of a small shoe box and weighs less than a kilogram. It also requires minimal operator training and eliminates the washing and incubation stages required by many conventional bioprinters.

The researchers plan to add several capabilities to the printer, including expanding the size of the coverable wound areas. Working with Jeschkes team at Sunnybrook Hospital, they plan to perform more in vivo studies. They hope that one day they can begin running clinical trials on humans, and eventually revolutionize burn care.

Topics

The Bulletin Brief logo

Subscribe to The Bulletin Brief

Engineering